Main Page
Related Pages
Namespaces
Classes
Files
File List
File Members
All
Classes
Namespaces
Files
Functions
Variables
Typedefs
Enumerations
Enumerator
Macros
Pages
platform
Android
KtxTextures
uthash.h
1
// Copyright eeGeo Ltd (2012-2014), All Rights Reserved
2
3
#ifndef UTHASH_H
4
#define UTHASH_H
5
6
#include <string.h>
/* memcmp,strlen */
7
#include <stddef.h>
/* ptrdiff_t */
8
9
/* These macros use decltype or the earlier __typeof GNU extension.
10
As decltype is only available in newer compilers (VS2010 or gcc 4.3+
11
when compiling c++ source) this code uses whatever method is needed
12
or, for VS2008 where neither is available, uses casting workarounds. */
13
#ifdef _MSC_VER
/* MS compiler */
14
#if _MSC_VER >= 1600 && __cplusplus
/* VS2010 or newer in C++ mode */
15
#define DECLTYPE(x) (decltype(x))
16
#else
/* VS2008 or older (or VS2010 in C mode) */
17
#define NO_DECLTYPE
18
#define DECLTYPE(x)
19
#endif
20
#else
/* GNU, Sun and other compilers */
21
#define DECLTYPE(x) (__typeof(x))
22
#endif
23
24
#ifdef NO_DECLTYPE
25
#define DECLTYPE_ASSIGN(dst,src) \
26
do { \
27
char **_da_dst = (char**)(&(dst)); \
28
*_da_dst = (char*)(src); \
29
} while(0)
30
#else
31
#define DECLTYPE_ASSIGN(dst,src) \
32
do { \
33
(dst) = DECLTYPE(dst)(src); \
34
} while(0)
35
#endif
36
37
/* a number of the hash function use uint32_t which isn't defined on win32 */
38
#ifdef _MSC_VER
39
typedef
unsigned
int
uint32_t;
40
#else
41
#include <inttypes.h>
/* uint32_t */
42
#endif
43
44
#define UTHASH_VERSION 1.9.1
45
46
#define uthash_fatal(msg) exit(-1)
/* fatal error (out of memory,etc) */
47
#define uthash_malloc(sz) malloc(sz)
/* malloc fcn */
48
#define uthash_free(ptr) free(ptr)
/* free fcn */
49
50
#define uthash_noexpand_fyi(tbl)
/* can be defined to log noexpand */
51
#define uthash_expand_fyi(tbl)
/* can be defined to log expands */
52
53
/* initial number of buckets */
54
#define HASH_INITIAL_NUM_BUCKETS 32
/* initial number of buckets */
55
#define HASH_INITIAL_NUM_BUCKETS_LOG2 5
/* lg2 of initial number of buckets */
56
#define HASH_BKT_CAPACITY_THRESH 10
/* expand when bucket count reaches */
57
58
/* calculate the element whose hash handle address is hhe */
59
#define ELMT_FROM_HH(tbl,hhp) ((void*)(((char*)(hhp)) - ((tbl)->hho)))
60
61
#define HASH_FIND(hh,head,keyptr,keylen,out) \
62
do { \
63
unsigned _hf_bkt,_hf_hashv; \
64
out=NULL; \
65
if (head) { \
66
HASH_FCN(keyptr,keylen, (head)->hh.tbl->num_buckets, _hf_hashv, _hf_bkt); \
67
if (HASH_BLOOM_TEST((head)->hh.tbl, _hf_hashv)) { \
68
HASH_FIND_IN_BKT((head)->hh.tbl, hh, (head)->hh.tbl->buckets[ _hf_bkt ], \
69
keyptr,keylen,out); \
70
} \
71
} \
72
} while (0)
73
74
#ifdef HASH_BLOOM
75
#define HASH_BLOOM_BITLEN (1ULL << HASH_BLOOM)
76
#define HASH_BLOOM_BYTELEN (HASH_BLOOM_BITLEN/8) + ((HASH_BLOOM_BITLEN%8) ? 1:0)
77
#define HASH_BLOOM_MAKE(tbl) \
78
do { \
79
(tbl)->bloom_nbits = HASH_BLOOM; \
80
(tbl)->bloom_bv = (uint8_t*)uthash_malloc(HASH_BLOOM_BYTELEN); \
81
if (!((tbl)->bloom_bv)) { uthash_fatal( "out of memory"); } \
82
memset((tbl)->bloom_bv, 0, HASH_BLOOM_BYTELEN); \
83
(tbl)->bloom_sig = HASH_BLOOM_SIGNATURE; \
84
} while (0);
85
86
#define HASH_BLOOM_FREE(tbl) \
87
do { \
88
uthash_free((tbl)->bloom_bv); \
89
} while (0);
90
91
#define HASH_BLOOM_BITSET(bv,idx) (bv[(idx)/8] |= (1U << ((idx)%8)))
92
#define HASH_BLOOM_BITTEST(bv,idx) (bv[(idx)/8] & (1U << ((idx)%8)))
93
94
#define HASH_BLOOM_ADD(tbl,hashv) \
95
HASH_BLOOM_BITSET((tbl)->bloom_bv, (hashv & (uint32_t)((1ULL << (tbl)->bloom_nbits) - 1)))
96
97
#define HASH_BLOOM_TEST(tbl,hashv) \
98
HASH_BLOOM_BITTEST((tbl)->bloom_bv, (hashv & (uint32_t)((1ULL << (tbl)->bloom_nbits) - 1)))
99
100
#else
101
#define HASH_BLOOM_MAKE(tbl)
102
#define HASH_BLOOM_FREE(tbl)
103
#define HASH_BLOOM_ADD(tbl,hashv)
104
#define HASH_BLOOM_TEST(tbl,hashv) (1)
105
#endif
106
107
#define HASH_MAKE_TABLE(hh,head) \
108
do { \
109
(head)->hh.tbl = (UT_hash_table*)uthash_malloc( \
110
sizeof(UT_hash_table)); \
111
if (!((head)->hh.tbl)) { uthash_fatal( "out of memory"); } \
112
memset((head)->hh.tbl, 0, sizeof(UT_hash_table)); \
113
(head)->hh.tbl->tail = &((head)->hh); \
114
(head)->hh.tbl->num_buckets = HASH_INITIAL_NUM_BUCKETS; \
115
(head)->hh.tbl->log2_num_buckets = HASH_INITIAL_NUM_BUCKETS_LOG2; \
116
(head)->hh.tbl->hho = (char*)(&(head)->hh) - (char*)(head); \
117
(head)->hh.tbl->buckets = (UT_hash_bucket*)uthash_malloc( \
118
HASH_INITIAL_NUM_BUCKETS*sizeof(struct UT_hash_bucket)); \
119
if (! (head)->hh.tbl->buckets) { uthash_fatal( "out of memory"); } \
120
memset((head)->hh.tbl->buckets, 0, \
121
HASH_INITIAL_NUM_BUCKETS*sizeof(struct UT_hash_bucket)); \
122
HASH_BLOOM_MAKE((head)->hh.tbl); \
123
(head)->hh.tbl->signature = HASH_SIGNATURE; \
124
} while(0)
125
126
#define HASH_ADD(hh,head,fieldname,keylen_in,add) \
127
HASH_ADD_KEYPTR(hh,head,&add->fieldname,keylen_in,add)
128
129
#define HASH_ADD_KEYPTR(hh,head,keyptr,keylen_in,add) \
130
do { \
131
unsigned _ha_bkt; \
132
(add)->hh.next = NULL; \
133
(add)->hh.key = (char*)keyptr; \
134
(add)->hh.keylen = keylen_in; \
135
if (!(head)) { \
136
head = (add); \
137
(head)->hh.prev = NULL; \
138
HASH_MAKE_TABLE(hh,head); \
139
} else { \
140
(head)->hh.tbl->tail->next = (add); \
141
(add)->hh.prev = ELMT_FROM_HH((head)->hh.tbl, (head)->hh.tbl->tail); \
142
(head)->hh.tbl->tail = &((add)->hh); \
143
} \
144
(head)->hh.tbl->num_items++; \
145
(add)->hh.tbl = (head)->hh.tbl; \
146
HASH_FCN(keyptr,keylen_in, (head)->hh.tbl->num_buckets, \
147
(add)->hh.hashv, _ha_bkt); \
148
HASH_ADD_TO_BKT((head)->hh.tbl->buckets[_ha_bkt],&(add)->hh); \
149
HASH_BLOOM_ADD((head)->hh.tbl,(add)->hh.hashv); \
150
HASH_EMIT_KEY(hh,head,keyptr,keylen_in); \
151
HASH_FSCK(hh,head); \
152
} while(0)
153
154
#define HASH_TO_BKT( hashv, num_bkts, bkt ) \
155
do { \
156
bkt = ((hashv) & ((num_bkts) - 1)); \
157
} while(0)
158
159
/* delete "delptr" from the hash table.
160
* "the usual" patch-up process for the app-order doubly-linked-list.
161
* The use of _hd_hh_del below deserves special explanation.
162
* These used to be expressed using (delptr) but that led to a bug
163
* if someone used the same symbol for the head and deletee, like
164
* HASH_DELETE(hh,users,users);
165
* We want that to work, but by changing the head (users) below
166
* we were forfeiting our ability to further refer to the deletee (users)
167
* in the patch-up process. Solution: use scratch space to
168
* copy the deletee pointer, then the latter references are via that
169
* scratch pointer rather than through the repointed (users) symbol.
170
*/
171
#define HASH_DELETE(hh,head,delptr) \
172
do { \
173
unsigned _hd_bkt; \
174
struct UT_hash_handle *_hd_hh_del; \
175
if ( ((delptr)->hh.prev == NULL) && ((delptr)->hh.next == NULL) ) { \
176
uthash_free((head)->hh.tbl->buckets ); \
177
HASH_BLOOM_FREE((head)->hh.tbl); \
178
uthash_free((head)->hh.tbl); \
179
head = NULL; \
180
} else { \
181
_hd_hh_del = &((delptr)->hh); \
182
if ((delptr) == ELMT_FROM_HH((head)->hh.tbl,(head)->hh.tbl->tail)) { \
183
(head)->hh.tbl->tail = \
184
(UT_hash_handle*)((char*)((delptr)->hh.prev) + \
185
(head)->hh.tbl->hho); \
186
} \
187
if ((delptr)->hh.prev) { \
188
((UT_hash_handle*)((char*)((delptr)->hh.prev) + \
189
(head)->hh.tbl->hho))->next = (delptr)->hh.next; \
190
} else { \
191
DECLTYPE_ASSIGN(head,(delptr)->hh.next); \
192
} \
193
if (_hd_hh_del->next) { \
194
((UT_hash_handle*)((char*)_hd_hh_del->next + \
195
(head)->hh.tbl->hho))->prev = \
196
_hd_hh_del->prev; \
197
} \
198
HASH_TO_BKT( _hd_hh_del->hashv, (head)->hh.tbl->num_buckets, _hd_bkt); \
199
HASH_DEL_IN_BKT(hh,(head)->hh.tbl->buckets[_hd_bkt], _hd_hh_del); \
200
(head)->hh.tbl->num_items--; \
201
} \
202
HASH_FSCK(hh,head); \
203
} while (0)
204
205
206
/* convenience forms of HASH_FIND/HASH_ADD/HASH_DEL */
207
#define HASH_FIND_STR(head,findstr,out) \
208
HASH_FIND(hh,head,findstr,strlen(findstr),out)
209
#define HASH_ADD_STR(head,strfield,add) \
210
HASH_ADD(hh,head,strfield,strlen(add->strfield),add)
211
#define HASH_FIND_INT(head,findint,out) \
212
HASH_FIND(hh,head,findint,sizeof(int),out)
213
#define HASH_ADD_INT(head,intfield,add) \
214
HASH_ADD(hh,head,intfield,sizeof(int),add)
215
#define HASH_FIND_PTR(head,findptr,out) \
216
HASH_FIND(hh,head,findptr,sizeof(void *),out)
217
#define HASH_ADD_PTR(head,ptrfield,add) \
218
HASH_ADD(hh,head,ptrfield,sizeof(void *),add)
219
#define HASH_DEL(head,delptr) \
220
HASH_DELETE(hh,head,delptr)
221
222
/* HASH_FSCK checks hash integrity on every add/delete when HASH_DEBUG is defined.
223
* This is for uthash developer only; it compiles away if HASH_DEBUG isn't defined.
224
*/
225
#ifdef HASH_DEBUG
226
#define HASH_OOPS(...) do { fprintf(stderr,__VA_ARGS__); exit(-1); } while (0)
227
#define HASH_FSCK(hh,head) \
228
do { \
229
unsigned _bkt_i; \
230
unsigned _count, _bkt_count; \
231
char *_prev; \
232
struct UT_hash_handle *_thh; \
233
if (head) { \
234
_count = 0; \
235
for( _bkt_i = 0; _bkt_i < (head)->hh.tbl->num_buckets; _bkt_i++) { \
236
_bkt_count = 0; \
237
_thh = (head)->hh.tbl->buckets[_bkt_i].hh_head; \
238
_prev = NULL; \
239
while (_thh) { \
240
if (_prev != (char*)(_thh->hh_prev)) { \
241
HASH_OOPS("invalid hh_prev %p, actual %p\n", \
242
_thh->hh_prev, _prev ); \
243
} \
244
_bkt_count++; \
245
_prev = (char*)(_thh); \
246
_thh = _thh->hh_next; \
247
} \
248
_count += _bkt_count; \
249
if ((head)->hh.tbl->buckets[_bkt_i].count != _bkt_count) { \
250
HASH_OOPS("invalid bucket count %d, actual %d\n", \
251
(head)->hh.tbl->buckets[_bkt_i].count, _bkt_count); \
252
} \
253
} \
254
if (_count != (head)->hh.tbl->num_items) { \
255
HASH_OOPS("invalid hh item count %d, actual %d\n", \
256
(head)->hh.tbl->num_items, _count ); \
257
} \
258
/* traverse hh in app order; check next/prev integrity, count */
\
259
_count = 0; \
260
_prev = NULL; \
261
_thh = &(head)->hh; \
262
while (_thh) { \
263
_count++; \
264
if (_prev !=(char*)(_thh->prev)) { \
265
HASH_OOPS("invalid prev %p, actual %p\n", \
266
_thh->prev, _prev ); \
267
} \
268
_prev = (char*)ELMT_FROM_HH((head)->hh.tbl, _thh); \
269
_thh = ( _thh->next ? (UT_hash_handle*)((char*)(_thh->next) + \
270
(head)->hh.tbl->hho) : NULL ); \
271
} \
272
if (_count != (head)->hh.tbl->num_items) { \
273
HASH_OOPS("invalid app item count %d, actual %d\n", \
274
(head)->hh.tbl->num_items, _count ); \
275
} \
276
} \
277
} while (0)
278
#else
279
#define HASH_FSCK(hh,head)
280
#endif
281
282
/* When compiled with -DHASH_EMIT_KEYS, length-prefixed keys are emitted to
283
* the descriptor to which this macro is defined for tuning the hash function.
284
* The app can #include <unistd.h> to get the prototype for write(2). */
285
#ifdef HASH_EMIT_KEYS
286
#define HASH_EMIT_KEY(hh,head,keyptr,fieldlen) \
287
do { \
288
unsigned _klen = fieldlen; \
289
write(HASH_EMIT_KEYS, &_klen, sizeof(_klen)); \
290
write(HASH_EMIT_KEYS, keyptr, fieldlen); \
291
} while (0)
292
#else
293
#define HASH_EMIT_KEY(hh,head,keyptr,fieldlen)
294
#endif
295
296
/* default to Jenkin's hash unless overridden e.g. DHASH_FUNCTION=HASH_SAX */
297
#ifdef HASH_FUNCTION
298
#define HASH_FCN HASH_FUNCTION
299
#else
300
#define HASH_FCN HASH_JEN
301
#endif
302
303
/* The Bernstein hash function, used in Perl prior to v5.6 */
304
#define HASH_BER(key,keylen,num_bkts,hashv,bkt) \
305
do { \
306
unsigned _hb_keylen=keylen; \
307
char *_hb_key=(char*)key; \
308
(hashv) = 0; \
309
while (_hb_keylen--) { (hashv) = ((hashv) * 33) + *_hb_key++; } \
310
bkt = (hashv) & (num_bkts-1); \
311
} while (0)
312
313
314
/* SAX/FNV/OAT/JEN hash functions are macro variants of those listed at
315
* http://eternallyconfuzzled.com/tuts/algorithms/jsw_tut_hashing.aspx */
316
#define HASH_SAX(key,keylen,num_bkts,hashv,bkt) \
317
do { \
318
unsigned _sx_i; \
319
char *_hs_key=(char*)key; \
320
hashv = 0; \
321
for(_sx_i=0; _sx_i < keylen; _sx_i++) \
322
hashv ^= (hashv << 5) + (hashv >> 2) + _hs_key[_sx_i]; \
323
bkt = hashv & (num_bkts-1); \
324
} while (0)
325
326
#define HASH_FNV(key,keylen,num_bkts,hashv,bkt) \
327
do { \
328
unsigned _fn_i; \
329
char *_hf_key=(char*)key; \
330
hashv = 2166136261UL; \
331
for(_fn_i=0; _fn_i < keylen; _fn_i++) \
332
hashv = (hashv * 16777619) ^ _hf_key[_fn_i]; \
333
bkt = hashv & (num_bkts-1); \
334
} while(0);
335
336
#define HASH_OAT(key,keylen,num_bkts,hashv,bkt) \
337
do { \
338
unsigned _ho_i; \
339
char *_ho_key=(char*)key; \
340
hashv = 0; \
341
for(_ho_i=0; _ho_i < keylen; _ho_i++) { \
342
hashv += _ho_key[_ho_i]; \
343
hashv += (hashv << 10); \
344
hashv ^= (hashv >> 6); \
345
} \
346
hashv += (hashv << 3); \
347
hashv ^= (hashv >> 11); \
348
hashv += (hashv << 15); \
349
bkt = hashv & (num_bkts-1); \
350
} while(0)
351
352
#define HASH_JEN_MIX(a,b,c) \
353
do { \
354
a -= b; a -= c; a ^= ( c >> 13 ); \
355
b -= c; b -= a; b ^= ( a << 8 ); \
356
c -= a; c -= b; c ^= ( b >> 13 ); \
357
a -= b; a -= c; a ^= ( c >> 12 ); \
358
b -= c; b -= a; b ^= ( a << 16 ); \
359
c -= a; c -= b; c ^= ( b >> 5 ); \
360
a -= b; a -= c; a ^= ( c >> 3 ); \
361
b -= c; b -= a; b ^= ( a << 10 ); \
362
c -= a; c -= b; c ^= ( b >> 15 ); \
363
} while (0)
364
365
#define HASH_JEN(key,keylen,num_bkts,hashv,bkt) \
366
do { \
367
unsigned _hj_i,_hj_j,_hj_k; \
368
char *_hj_key=(char*)key; \
369
hashv = 0xfeedbeef; \
370
_hj_i = _hj_j = 0x9e3779b9; \
371
_hj_k = keylen; \
372
while (_hj_k >= 12) { \
373
_hj_i += (_hj_key[0] + ( (unsigned)_hj_key[1] << 8 ) \
374
+ ( (unsigned)_hj_key[2] << 16 ) \
375
+ ( (unsigned)_hj_key[3] << 24 ) ); \
376
_hj_j += (_hj_key[4] + ( (unsigned)_hj_key[5] << 8 ) \
377
+ ( (unsigned)_hj_key[6] << 16 ) \
378
+ ( (unsigned)_hj_key[7] << 24 ) ); \
379
hashv += (_hj_key[8] + ( (unsigned)_hj_key[9] << 8 ) \
380
+ ( (unsigned)_hj_key[10] << 16 ) \
381
+ ( (unsigned)_hj_key[11] << 24 ) ); \
382
\
383
HASH_JEN_MIX(_hj_i, _hj_j, hashv); \
384
\
385
_hj_key += 12; \
386
_hj_k -= 12; \
387
} \
388
hashv += keylen; \
389
switch ( _hj_k ) { \
390
case 11: hashv += ( (unsigned)_hj_key[10] << 24 ); \
391
case 10: hashv += ( (unsigned)_hj_key[9] << 16 ); \
392
case 9: hashv += ( (unsigned)_hj_key[8] << 8 ); \
393
case 8: _hj_j += ( (unsigned)_hj_key[7] << 24 ); \
394
case 7: _hj_j += ( (unsigned)_hj_key[6] << 16 ); \
395
case 6: _hj_j += ( (unsigned)_hj_key[5] << 8 ); \
396
case 5: _hj_j += _hj_key[4]; \
397
case 4: _hj_i += ( (unsigned)_hj_key[3] << 24 ); \
398
case 3: _hj_i += ( (unsigned)_hj_key[2] << 16 ); \
399
case 2: _hj_i += ( (unsigned)_hj_key[1] << 8 ); \
400
case 1: _hj_i += _hj_key[0]; \
401
} \
402
HASH_JEN_MIX(_hj_i, _hj_j, hashv); \
403
bkt = hashv & (num_bkts-1); \
404
} while(0)
405
406
/* The Paul Hsieh hash function */
407
#undef get16bits
408
#if (defined(__GNUC__) && defined(__i386__)) || defined(__WATCOMC__) \
409
|| defined(_MSC_VER) || defined (__BORLANDC__) || defined (__TURBOC__)
410
#define get16bits(d) (*((const uint16_t *) (d)))
411
#endif
412
413
#if !defined (get16bits)
414
#define get16bits(d) ((((uint32_t)(((const uint8_t *)(d))[1])) << 8) \
415
+(uint32_t)(((const uint8_t *)(d))[0]) )
416
#endif
417
#define HASH_SFH(key,keylen,num_bkts,hashv,bkt) \
418
do { \
419
char *_sfh_key=(char*)key; \
420
uint32_t _sfh_tmp, _sfh_len = keylen; \
421
\
422
int _sfh_rem = _sfh_len & 3; \
423
_sfh_len >>= 2; \
424
hashv = 0xcafebabe; \
425
\
426
/* Main loop */
\
427
for (;_sfh_len > 0; _sfh_len--) { \
428
hashv += get16bits (_sfh_key); \
429
_sfh_tmp = (get16bits (_sfh_key+2) << 11) ^ hashv; \
430
hashv = (hashv << 16) ^ _sfh_tmp; \
431
_sfh_key += 2*sizeof (uint16_t); \
432
hashv += hashv >> 11; \
433
} \
434
\
435
/* Handle end cases */
\
436
switch (_sfh_rem) { \
437
case 3: hashv += get16bits (_sfh_key); \
438
hashv ^= hashv << 16; \
439
hashv ^= _sfh_key[sizeof (uint16_t)] << 18; \
440
hashv += hashv >> 11; \
441
break; \
442
case 2: hashv += get16bits (_sfh_key); \
443
hashv ^= hashv << 11; \
444
hashv += hashv >> 17; \
445
break; \
446
case 1: hashv += *_sfh_key; \
447
hashv ^= hashv << 10; \
448
hashv += hashv >> 1; \
449
} \
450
\
451
/* Force "avalanching" of final 127 bits */
\
452
hashv ^= hashv << 3; \
453
hashv += hashv >> 5; \
454
hashv ^= hashv << 4; \
455
hashv += hashv >> 17; \
456
hashv ^= hashv << 25; \
457
hashv += hashv >> 6; \
458
bkt = hashv & (num_bkts-1); \
459
} while(0);
460
461
#ifdef HASH_USING_NO_STRICT_ALIASING
462
/* The MurmurHash exploits some CPU's (e.g. x86) tolerance for unaligned reads.
463
* For other types of CPU's (e.g. Sparc) an unaligned read causes a bus error.
464
* So MurmurHash comes in two versions, the faster unaligned one and the slower
465
* aligned one. We only use the faster one on CPU's where we know it's safe.
466
*
467
* Note the preprocessor built-in defines can be emitted using:
468
*
469
* gcc -m64 -dM -E - < /dev/null (on gcc)
470
* cc -## a.c (where a.c is a simple test file) (Sun Studio)
471
*/
472
#if (defined(__i386__) || defined(__x86_64__))
473
#define HASH_MUR HASH_MUR_UNALIGNED
474
#else
475
#define HASH_MUR HASH_MUR_ALIGNED
476
#endif
477
478
/* Appleby's MurmurHash fast version for unaligned-tolerant archs like i386 */
479
#define HASH_MUR_UNALIGNED(key,keylen,num_bkts,hashv,bkt) \
480
do { \
481
const unsigned int _mur_m = 0x5bd1e995; \
482
const int _mur_r = 24; \
483
hashv = 0xcafebabe ^ keylen; \
484
char *_mur_key = (char *)key; \
485
uint32_t _mur_tmp, _mur_len = keylen; \
486
\
487
for (;_mur_len >= 4; _mur_len-=4) { \
488
_mur_tmp = *(uint32_t *)_mur_key; \
489
_mur_tmp *= _mur_m; \
490
_mur_tmp ^= _mur_tmp >> _mur_r; \
491
_mur_tmp *= _mur_m; \
492
hashv *= _mur_m; \
493
hashv ^= _mur_tmp; \
494
_mur_key += 4; \
495
} \
496
\
497
switch(_mur_len) \
498
{ \
499
case 3: hashv ^= _mur_key[2] << 16; \
500
case 2: hashv ^= _mur_key[1] << 8; \
501
case 1: hashv ^= _mur_key[0]; \
502
hashv *= _mur_m; \
503
}; \
504
\
505
hashv ^= hashv >> 13; \
506
hashv *= _mur_m; \
507
hashv ^= hashv >> 15; \
508
\
509
bkt = hashv & (num_bkts-1); \
510
} while(0)
511
512
/* Appleby's MurmurHash version for alignment-sensitive archs like Sparc */
513
#define HASH_MUR_ALIGNED(key,keylen,num_bkts,hashv,bkt) \
514
do { \
515
const unsigned int _mur_m = 0x5bd1e995; \
516
const int _mur_r = 24; \
517
hashv = 0xcafebabe ^ keylen; \
518
char *_mur_key = (char *)key; \
519
uint32_t _mur_len = keylen; \
520
int _mur_align = (int)_mur_key & 3; \
521
\
522
if (_mur_align && (_mur_len >= 4)) { \
523
unsigned _mur_t = 0, _mur_d = 0; \
524
switch(_mur_align) { \
525
case 1: _mur_t |= _mur_key[2] << 16; \
526
case 2: _mur_t |= _mur_key[1] << 8; \
527
case 3: _mur_t |= _mur_key[0]; \
528
} \
529
_mur_t <<= (8 * _mur_align); \
530
_mur_key += 4-_mur_align; \
531
_mur_len -= 4-_mur_align; \
532
int _mur_sl = 8 * (4-_mur_align); \
533
int _mur_sr = 8 * _mur_align; \
534
\
535
for (;_mur_len >= 4; _mur_len-=4) { \
536
_mur_d = *(unsigned *)_mur_key; \
537
_mur_t = (_mur_t >> _mur_sr) | (_mur_d << _mur_sl); \
538
unsigned _mur_k = _mur_t; \
539
_mur_k *= _mur_m; \
540
_mur_k ^= _mur_k >> _mur_r; \
541
_mur_k *= _mur_m; \
542
hashv *= _mur_m; \
543
hashv ^= _mur_k; \
544
_mur_t = _mur_d; \
545
_mur_key += 4; \
546
} \
547
_mur_d = 0; \
548
if(_mur_len >= _mur_align) { \
549
switch(_mur_align) { \
550
case 3: _mur_d |= _mur_key[2] << 16; \
551
case 2: _mur_d |= _mur_key[1] << 8; \
552
case 1: _mur_d |= _mur_key[0]; \
553
} \
554
unsigned _mur_k = (_mur_t >> _mur_sr) | (_mur_d << _mur_sl); \
555
_mur_k *= _mur_m; \
556
_mur_k ^= _mur_k >> _mur_r; \
557
_mur_k *= _mur_m; \
558
hashv *= _mur_m; \
559
hashv ^= _mur_k; \
560
_mur_k += _mur_align; \
561
_mur_len -= _mur_align; \
562
\
563
switch(_mur_len) \
564
{ \
565
case 3: hashv ^= _mur_key[2] << 16; \
566
case 2: hashv ^= _mur_key[1] << 8; \
567
case 1: hashv ^= _mur_key[0]; \
568
hashv *= _mur_m; \
569
} \
570
} else { \
571
switch(_mur_len) \
572
{ \
573
case 3: _mur_d ^= _mur_key[2] << 16; \
574
case 2: _mur_d ^= _mur_key[1] << 8; \
575
case 1: _mur_d ^= _mur_key[0]; \
576
case 0: hashv ^= (_mur_t >> _mur_sr) | (_mur_d << _mur_sl); \
577
hashv *= _mur_m; \
578
} \
579
} \
580
\
581
hashv ^= hashv >> 13; \
582
hashv *= _mur_m; \
583
hashv ^= hashv >> 15; \
584
} else { \
585
for (;_mur_len >= 4; _mur_len-=4) { \
586
unsigned _mur_k = *(unsigned*)_mur_key; \
587
_mur_k *= _mur_m; \
588
_mur_k ^= _mur_k >> _mur_r; \
589
_mur_k *= _mur_m; \
590
hashv *= _mur_m; \
591
hashv ^= _mur_k; \
592
_mur_key += 4; \
593
} \
594
switch(_mur_len) \
595
{ \
596
case 3: hashv ^= _mur_key[2] << 16; \
597
case 2: hashv ^= _mur_key[1] << 8; \
598
case 1: hashv ^= _mur_key[0]; \
599
hashv *= _mur_m; \
600
} \
601
\
602
hashv ^= hashv >> 13; \
603
hashv *= _mur_m; \
604
hashv ^= hashv >> 15; \
605
} \
606
bkt = hashv & (num_bkts-1); \
607
} while(0)
608
#endif
/* HASH_USING_NO_STRICT_ALIASING */
609
610
/* key comparison function; return 0 if keys equal */
611
#define HASH_KEYCMP(a,b,len) memcmp(a,b,len)
612
613
/* iterate over items in a known bucket to find desired item */
614
#define HASH_FIND_IN_BKT(tbl,hh,head,keyptr,keylen_in,out) \
615
do { \
616
if (head.hh_head) DECLTYPE_ASSIGN(out,ELMT_FROM_HH(tbl,head.hh_head)); \
617
else out=NULL; \
618
while (out) { \
619
if (out->hh.keylen == keylen_in) { \
620
if ((HASH_KEYCMP(out->hh.key,keyptr,keylen_in)) == 0) break; \
621
} \
622
if (out->hh.hh_next) DECLTYPE_ASSIGN(out,ELMT_FROM_HH(tbl,out->hh.hh_next)); \
623
else out = NULL; \
624
} \
625
} while(0)
626
627
/* add an item to a bucket */
628
#define HASH_ADD_TO_BKT(head,addhh) \
629
do { \
630
head.count++; \
631
(addhh)->hh_next = head.hh_head; \
632
(addhh)->hh_prev = NULL; \
633
if (head.hh_head) { (head).hh_head->hh_prev = (addhh); } \
634
(head).hh_head=addhh; \
635
if (head.count >= ((head.expand_mult+1) * HASH_BKT_CAPACITY_THRESH) \
636
&& (addhh)->tbl->noexpand != 1) { \
637
HASH_EXPAND_BUCKETS((addhh)->tbl); \
638
} \
639
} while(0)
640
641
/* remove an item from a given bucket */
642
#define HASH_DEL_IN_BKT(hh,head,hh_del) \
643
(head).count--; \
644
if ((head).hh_head == hh_del) { \
645
(head).hh_head = hh_del->hh_next; \
646
} \
647
if (hh_del->hh_prev) { \
648
hh_del->hh_prev->hh_next = hh_del->hh_next; \
649
} \
650
if (hh_del->hh_next) { \
651
hh_del->hh_next->hh_prev = hh_del->hh_prev; \
652
}
653
654
/* Bucket expansion has the effect of doubling the number of buckets
655
* and redistributing the items into the new buckets. Ideally the
656
* items will distribute more or less evenly into the new buckets
657
* (the extent to which this is true is a measure of the quality of
658
* the hash function as it applies to the key domain).
659
*
660
* With the items distributed into more buckets, the chain length
661
* (item count) in each bucket is reduced. Thus by expanding buckets
662
* the hash keeps a bound on the chain length. This bounded chain
663
* length is the essence of how a hash provides constant time lookup.
664
*
665
* The calculation of tbl->ideal_chain_maxlen below deserves some
666
* explanation. First, keep in mind that we're calculating the ideal
667
* maximum chain length based on the *new* (doubled) bucket count.
668
* In fractions this is just n/b (n=number of items,b=new num buckets).
669
* Since the ideal chain length is an integer, we want to calculate
670
* ceil(n/b). We don't depend on floating point arithmetic in this
671
* hash, so to calculate ceil(n/b) with integers we could write
672
*
673
* ceil(n/b) = (n/b) + ((n%b)?1:0)
674
*
675
* and in fact a previous version of this hash did just that.
676
* But now we have improved things a bit by recognizing that b is
677
* always a power of two. We keep its base 2 log handy (call it lb),
678
* so now we can write this with a bit shift and logical AND:
679
*
680
* ceil(n/b) = (n>>lb) + ( (n & (b-1)) ? 1:0)
681
*
682
*/
683
#define HASH_EXPAND_BUCKETS(tbl) \
684
do { \
685
unsigned _he_bkt; \
686
unsigned _he_bkt_i; \
687
struct UT_hash_handle *_he_thh, *_he_hh_nxt; \
688
UT_hash_bucket *_he_new_buckets, *_he_newbkt; \
689
_he_new_buckets = (UT_hash_bucket*)uthash_malloc( \
690
2 * tbl->num_buckets * sizeof(struct UT_hash_bucket)); \
691
if (!_he_new_buckets) { uthash_fatal( "out of memory"); } \
692
memset(_he_new_buckets, 0, \
693
2 * tbl->num_buckets * sizeof(struct UT_hash_bucket)); \
694
tbl->ideal_chain_maxlen = \
695
(tbl->num_items >> (tbl->log2_num_buckets+1)) + \
696
((tbl->num_items & ((tbl->num_buckets*2)-1)) ? 1 : 0); \
697
tbl->nonideal_items = 0; \
698
for(_he_bkt_i = 0; _he_bkt_i < tbl->num_buckets; _he_bkt_i++) \
699
{ \
700
_he_thh = tbl->buckets[ _he_bkt_i ].hh_head; \
701
while (_he_thh) { \
702
_he_hh_nxt = _he_thh->hh_next; \
703
HASH_TO_BKT( _he_thh->hashv, tbl->num_buckets*2, _he_bkt); \
704
_he_newbkt = &(_he_new_buckets[ _he_bkt ]); \
705
if (++(_he_newbkt->count) > tbl->ideal_chain_maxlen) { \
706
tbl->nonideal_items++; \
707
_he_newbkt->expand_mult = _he_newbkt->count / \
708
tbl->ideal_chain_maxlen; \
709
} \
710
_he_thh->hh_prev = NULL; \
711
_he_thh->hh_next = _he_newbkt->hh_head; \
712
if (_he_newbkt->hh_head) _he_newbkt->hh_head->hh_prev = \
713
_he_thh; \
714
_he_newbkt->hh_head = _he_thh; \
715
_he_thh = _he_hh_nxt; \
716
} \
717
} \
718
tbl->num_buckets *= 2; \
719
tbl->log2_num_buckets++; \
720
uthash_free( tbl->buckets ); \
721
tbl->buckets = _he_new_buckets; \
722
tbl->ineff_expands = (tbl->nonideal_items > (tbl->num_items >> 1)) ? \
723
(tbl->ineff_expands+1) : 0; \
724
if (tbl->ineff_expands > 1) { \
725
tbl->noexpand=1; \
726
uthash_noexpand_fyi(tbl); \
727
} \
728
uthash_expand_fyi(tbl); \
729
} while(0)
730
731
732
/* This is an adaptation of Simon Tatham's O(n log(n)) mergesort */
733
/* Note that HASH_SORT assumes the hash handle name to be hh.
734
* HASH_SRT was added to allow the hash handle name to be passed in. */
735
#define HASH_SORT(head,cmpfcn) HASH_SRT(hh,head,cmpfcn)
736
#define HASH_SRT(hh,head,cmpfcn) \
737
do { \
738
unsigned _hs_i; \
739
unsigned _hs_looping,_hs_nmerges,_hs_insize,_hs_psize,_hs_qsize; \
740
struct UT_hash_handle *_hs_p, *_hs_q, *_hs_e, *_hs_list, *_hs_tail; \
741
if (head) { \
742
_hs_insize = 1; \
743
_hs_looping = 1; \
744
_hs_list = &((head)->hh); \
745
while (_hs_looping) { \
746
_hs_p = _hs_list; \
747
_hs_list = NULL; \
748
_hs_tail = NULL; \
749
_hs_nmerges = 0; \
750
while (_hs_p) { \
751
_hs_nmerges++; \
752
_hs_q = _hs_p; \
753
_hs_psize = 0; \
754
for ( _hs_i = 0; _hs_i < _hs_insize; _hs_i++ ) { \
755
_hs_psize++; \
756
_hs_q = (UT_hash_handle*)((_hs_q->next) ? \
757
((void*)((char*)(_hs_q->next) + \
758
(head)->hh.tbl->hho)) : NULL); \
759
if (! (_hs_q) ) break; \
760
} \
761
_hs_qsize = _hs_insize; \
762
while ((_hs_psize > 0) || ((_hs_qsize > 0) && _hs_q )) { \
763
if (_hs_psize == 0) { \
764
_hs_e = _hs_q; \
765
_hs_q = (UT_hash_handle*)((_hs_q->next) ? \
766
((void*)((char*)(_hs_q->next) + \
767
(head)->hh.tbl->hho)) : NULL); \
768
_hs_qsize--; \
769
} else if ( (_hs_qsize == 0) || !(_hs_q) ) { \
770
_hs_e = _hs_p; \
771
_hs_p = (UT_hash_handle*)((_hs_p->next) ? \
772
((void*)((char*)(_hs_p->next) + \
773
(head)->hh.tbl->hho)) : NULL); \
774
_hs_psize--; \
775
} else if (( \
776
cmpfcn(DECLTYPE(head)(ELMT_FROM_HH((head)->hh.tbl,_hs_p)), \
777
DECLTYPE(head)(ELMT_FROM_HH((head)->hh.tbl,_hs_q))) \
778
) <= 0) { \
779
_hs_e = _hs_p; \
780
_hs_p = (UT_hash_handle*)((_hs_p->next) ? \
781
((void*)((char*)(_hs_p->next) + \
782
(head)->hh.tbl->hho)) : NULL); \
783
_hs_psize--; \
784
} else { \
785
_hs_e = _hs_q; \
786
_hs_q = (UT_hash_handle*)((_hs_q->next) ? \
787
((void*)((char*)(_hs_q->next) + \
788
(head)->hh.tbl->hho)) : NULL); \
789
_hs_qsize--; \
790
} \
791
if ( _hs_tail ) { \
792
_hs_tail->next = ((_hs_e) ? \
793
ELMT_FROM_HH((head)->hh.tbl,_hs_e) : NULL); \
794
} else { \
795
_hs_list = _hs_e; \
796
} \
797
_hs_e->prev = ((_hs_tail) ? \
798
ELMT_FROM_HH((head)->hh.tbl,_hs_tail) : NULL); \
799
_hs_tail = _hs_e; \
800
} \
801
_hs_p = _hs_q; \
802
} \
803
_hs_tail->next = NULL; \
804
if ( _hs_nmerges <= 1 ) { \
805
_hs_looping=0; \
806
(head)->hh.tbl->tail = _hs_tail; \
807
DECLTYPE_ASSIGN(head,ELMT_FROM_HH((head)->hh.tbl, _hs_list)); \
808
} \
809
_hs_insize *= 2; \
810
} \
811
HASH_FSCK(hh,head); \
812
} \
813
} while (0)
814
815
/* This function selects items from one hash into another hash.
816
* The end result is that the selected items have dual presence
817
* in both hashes. There is no copy of the items made; rather
818
* they are added into the new hash through a secondary hash
819
* hash handle that must be present in the structure. */
820
#define HASH_SELECT(hh_dst, dst, hh_src, src, cond) \
821
do { \
822
unsigned _src_bkt, _dst_bkt; \
823
void *_last_elt=NULL, *_elt; \
824
UT_hash_handle *_src_hh, *_dst_hh, *_last_elt_hh=NULL; \
825
ptrdiff_t _dst_hho = ((char*)(&(dst)->hh_dst) - (char*)(dst)); \
826
if (src) { \
827
for(_src_bkt=0; _src_bkt < (src)->hh_src.tbl->num_buckets; _src_bkt++) { \
828
for(_src_hh = (src)->hh_src.tbl->buckets[_src_bkt].hh_head; \
829
_src_hh; \
830
_src_hh = _src_hh->hh_next) { \
831
_elt = ELMT_FROM_HH((src)->hh_src.tbl, _src_hh); \
832
if (cond(_elt)) { \
833
_dst_hh = (UT_hash_handle*)(((char*)_elt) + _dst_hho); \
834
_dst_hh->key = _src_hh->key; \
835
_dst_hh->keylen = _src_hh->keylen; \
836
_dst_hh->hashv = _src_hh->hashv; \
837
_dst_hh->prev = _last_elt; \
838
_dst_hh->next = NULL; \
839
if (_last_elt_hh) { _last_elt_hh->next = _elt; } \
840
if (!dst) { \
841
DECLTYPE_ASSIGN(dst,_elt); \
842
HASH_MAKE_TABLE(hh_dst,dst); \
843
} else { \
844
_dst_hh->tbl = (dst)->hh_dst.tbl; \
845
} \
846
HASH_TO_BKT(_dst_hh->hashv, _dst_hh->tbl->num_buckets, _dst_bkt); \
847
HASH_ADD_TO_BKT(_dst_hh->tbl->buckets[_dst_bkt],_dst_hh); \
848
(dst)->hh_dst.tbl->num_items++; \
849
_last_elt = _elt; \
850
_last_elt_hh = _dst_hh; \
851
} \
852
} \
853
} \
854
} \
855
HASH_FSCK(hh_dst,dst); \
856
} while (0)
857
858
#define HASH_CLEAR(hh,head) \
859
do { \
860
if (head) { \
861
uthash_free((head)->hh.tbl->buckets ); \
862
uthash_free((head)->hh.tbl); \
863
(head)=NULL; \
864
} \
865
} while(0)
866
867
/* obtain a count of items in the hash */
868
#define HASH_COUNT(head) HASH_CNT(hh,head)
869
#define HASH_CNT(hh,head) (head?(head->hh.tbl->num_items):0)
870
871
typedef
struct
UT_hash_bucket
{
872
struct
UT_hash_handle
*hh_head;
873
unsigned
count;
874
875
/* expand_mult is normally set to 0. In this situation, the max chain length
876
* threshold is enforced at its default value, HASH_BKT_CAPACITY_THRESH. (If
877
* the bucket's chain exceeds this length, bucket expansion is triggered).
878
* However, setting expand_mult to a non-zero value delays bucket expansion
879
* (that would be triggered by additions to this particular bucket)
880
* until its chain length reaches a *multiple* of HASH_BKT_CAPACITY_THRESH.
881
* (The multiplier is simply expand_mult+1). The whole idea of this
882
* multiplier is to reduce bucket expansions, since they are expensive, in
883
* situations where we know that a particular bucket tends to be overused.
884
* It is better to let its chain length grow to a longer yet-still-bounded
885
* value, than to do an O(n) bucket expansion too often.
886
*/
887
unsigned
expand_mult;
888
889
}
UT_hash_bucket
;
890
891
/* random signature used only to find hash tables in external analysis */
892
#define HASH_SIGNATURE 0xa0111fe1
893
#define HASH_BLOOM_SIGNATURE 0xb12220f2
894
895
typedef
struct
UT_hash_table
{
896
UT_hash_bucket
*buckets;
897
unsigned
num_buckets, log2_num_buckets;
898
unsigned
num_items;
899
struct
UT_hash_handle
*tail;
/* tail hh in app order, for fast append */
900
ptrdiff_t hho;
/* hash handle offset (byte pos of hash handle in element */
901
902
/* in an ideal situation (all buckets used equally), no bucket would have
903
* more than ceil(#items/#buckets) items. that's the ideal chain length. */
904
unsigned
ideal_chain_maxlen;
905
906
/* nonideal_items is the number of items in the hash whose chain position
907
* exceeds the ideal chain maxlen. these items pay the penalty for an uneven
908
* hash distribution; reaching them in a chain traversal takes >ideal steps */
909
unsigned
nonideal_items;
910
911
/* ineffective expands occur when a bucket doubling was performed, but
912
* afterward, more than half the items in the hash had nonideal chain
913
* positions. If this happens on two consecutive expansions we inhibit any
914
* further expansion, as it's not helping; this happens when the hash
915
* function isn't a good fit for the key domain. When expansion is inhibited
916
* the hash will still work, albeit no longer in constant time. */
917
unsigned
ineff_expands, noexpand;
918
919
uint32_t signature;
/* used only to find hash tables in external analysis */
920
#ifdef HASH_BLOOM
921
uint32_t bloom_sig;
/* used only to test bloom exists in external analysis */
922
uint8_t *bloom_bv;
923
char
bloom_nbits;
924
#endif
925
926
}
UT_hash_table
;
927
928
typedef
struct
UT_hash_handle
{
929
struct
UT_hash_table
*tbl;
930
void
*prev;
/* prev element in app order */
931
void
*next;
/* next element in app order */
932
struct
UT_hash_handle
*hh_prev;
/* previous hh in bucket order */
933
struct
UT_hash_handle
*hh_next;
/* next hh in bucket order */
934
void
*key;
/* ptr to enclosing struct's key */
935
unsigned
keylen;
/* enclosing struct's key len */
936
unsigned
hashv;
/* result of hash-fcn(key) */
937
}
UT_hash_handle
;
938
939
#endif
/* UTHASH_H */
Generated on Sat Jun 10 2023 02:00:28 for eeGeo Platform SDK by
1.8.3.1